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Genome-wide association studies (GWAS) facilitate thediscoveryof
genotype–phenotype relations from population-based sequence
databases, which is an integral facet of personalized medicine.
The increasing adoption of electronic medical records allows large
amounts of patients’ standardized clinical features to be combined
with thegenomic sequencesof thesepatients and shared to support
validation of GWAS findings and to enable novel discoveries. How-
ever, disseminating these data “as is”may lead to patient reidenti-
fication when genomic sequences are linked to resources that
contain the corresponding patients’ identity information based on
standardized clinical features. Thiswork proposes an approach that
provably prevents this type of data linkage and furnishes a result
that helps support GWAS. Our approach automatically extracts
potentially linkable clinical featuresandmodifies them inaway that
they can no longer be used to link a genomic sequence to a small
number of patients, while preserving the associations between
genomic sequences and specific sets of clinical features correspond-
ing to GWAS-related diseases. Extensive experiments with real
patient data derived from the Vanderbilt’s University Medical Cen-
ter verify thatourapproachgeneratesdata thateliminate the threat
of individual reidentification, while supporting GWAS validation
and clinical case analysis tasks.

The decreasing cost of high-throughput sequencing tech-
nologies, in combination with the growing adoption of health

information systems, has the potential to facilitate personalized
medicine. Such technologies can generate a substantial quantity of
detailed data, which can be mined to improve clinical diagnostics,
as well as treatments, for a wide range of complex diseases (1).
Notably, genome-wide association studies (GWAS) are increas-
ingly applied to identify relationships between specific genomic
variations and health-related phenomena; yet the cost associated
with studies on populations that are large enough for sufficiently
powered claims remains nontrivial (2). Consequentially, it is dif-
ficult for investigators to validate published associations. To
overcome this problem, various regulations have been developed
to encourage organizations to deposit data into repositories for
reuse (3). The National Institutes of Health (NIH), for instance,
recently defined a policy (4) stating that any GWAS data gen-
erated by, or studied with, NIH-sponsorship should be deposited
in the Database of Genotypes and Phenotypes (dbGaP) (3) for
broad dissemination. At the same time, the NIH acknowledges the
need to maintain privacy standards and, thus, requires data to be
deidentified. A typical deidentification strategy is based on the
Safe Harbor standard of the Health Insurance Portability and
Accountability Act (5), whereby records are stripped of a number
of potential identifiers, such as personal names and geocodes.
Electronic medical record (EMR) systems are increasingly

recognized as an important resource for GWAS (6). They con-
tain detailed patient-level data on large populations, incorporate
demographics and standardized clinical terminologies, and can
reduce both costs and time of conducting large-scale GWAS.
Although EMR data are derived from the primary care setting,
the data are often devoid of detailed genomic sequences, which
tend to be collected in a research environment. However, when
combined and disclosed in a deidentified state, the released data
may lead to individual reidentification if genomic sequences are

linked to resources that contain patients’ identity (e.g., hospital
discharge summaries or the original EMR system) through the
standardized clinical features, or “clinical profile,” of a patient.
Recently, it was demonstrated (7) that this type of data linkage
may lead to compromising the privacy of more than 96% of a
cohort of 2,762 patients from the Vanderbilt University Medical
Center, involved in anNIH-fundedGWAS, because these patients
were uniquely identifiable on the basis of the combination of
their ICD-9-CM codes (henceforth referred to as ICD codes).†

Although such clinical and genomic data have yet to be dis-
seminated, this illustrates the potential for privacy risks. To pro-
vide a clearer picture of the reidentification scenario, consider the
dataset in Fig. 1A. In this table, each record corresponds to a fic-
tional deidentified patient, comprises a set of ICD codes (derived
from an EMR) and a DNA sequence (derived from a research
project beyond primary care), and is analyzed in a GWAS on
asthma (the ICD codes for asthma are 493.00, 493.01, and 493.02).
If a hospital employee knows that Jimwas diagnosed with the three
ICD codes for asthma during a single hospital visit (e.g., by
accessing the first record of the identified EMR data of Fig. 1B),
then they would infer Jim’s DNA sequence because there is only
one patient in this dataset harboring this specific set of codes. Note
that it may also be possible for an attacker to know the ICD codes
an individual was diagnosed with during all visits (e.g., when they
have access to the entire dataset of Fig. 1B). We will consider this
attack later in this article.
Because the EMR-derived data are part of the GWAS study, it

should be disseminated to comply with data sharing requirements,
but in amanner thatmitigates the aforementioned threat. This can
be achieved by (i) specifying the sets of diagnosis codes that are
linkable to identified resources, and (ii) modifying the linkable
codes so that the clinical profiles containing these codes can be
linked to a sufficiently large number of individuals on the basis of
these codes. Code modification can prevent the linkage of a
patient to their DNA sequence, but at the same time it may distort
the associations between sets of codes corresponding to GWAS-
related diseases and the DNA sequence. Therefore, it is crucial to
retain the ability to support clinical association validations when
modifying clinical profiles. In this respect, various privacy-pre-
serving data publishing approaches have been proposed by the
statistical disclosure control and database communities. Methods
developed by the former community are inappropriate for our
scenario because they produce data that do not correspond to real-
world individuals (8). Thus, despite being able to retain some
aggregate statistics, the practical usefulness of the produced data
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may be low because they do not allow data recipients to examine
truthful patient records. At the same time, methods developed by
the databases community [e.g., k-anonymization (9) and (h, k, p)-
coherence (10)] are unable to guarantee a practically useful result
because (i) they tend to assume that an individual is associated
with a small set of linkable clinical features of fixed size (9), and (ii)
they do not take into account the ability of released data to support
clinical association validation when modifying clinical features (9,
10). Further discussion of related work can be found in SI Text.
In this study, we introduce an approach to prevent data linkage

attacks via standardized clinical features, while ensuring that the
released data are useful for GWAS validation. Our approach
extracts a privacy policy in the form of sets of clinical features that
require protection and anonymizes each record that contains any
of these codes to ensure that it links to no fewer than k individuals
with respect to these sets. Anonymization is achieved by replacing
clinical features with sets of semantically related codes to satisfy a
utility policy, which reflects the distribution of GWAS-related
diseases to be preserved. Thus, the proposed approach addresses
both limitations of prior work (9, 10), because it can handle records
with large sets of clinical features that vary in size and takes into
account specific utility requirements. For instance, assuming that
an attacker knows sets of clinical features diagnosed during a
single visit, our method can be applied to the dataset shown in
Fig. 1A, with k = 5 and the utility policy of Fig. 1C, to extract a
privacy policy, part of which is shown in Fig. 1D, and to generate
the dataset of Fig. 1E. The latter satisfies these specific privacy
requirements because each record links to no fewer than five
individuals with respect to the sets of ICD codes in the privacy
policy, as well as the utility requirements because the associations
between diseases and DNA sequences are unaffected; that is, the
distribution of the GWAS-related diseases is preserved (e.g., there
are six, five, and eight patients diagnosed with asthma, prostate
cancer, and pancreatic cancer in either of the datasets shown in
Figs. 1A and 1E, respectively). We evaluate our approach with a
real dataset involved in an NIH-sponsored GWAS study and
demonstrate that anonymized clinical profiles support the vali-

dation of GWAS focusing on several diseases and studies focusing
on clinical case counts.

Clinical Profile Anonymization Framework. This section begins with
a description of the basic concepts used in our method and then
provides algorithms for extracting privacy policies and anonym-
izing clinical profiles.
Definitions. In what follows, we define the structure of the con-
sidered datasets, the notions of privacy and utility policies, and
the anonymization strategy.

Structure of the data. We consider two types of biomedical data-
sets, each of which is represented as a database table. The first table
D corresponds to the GWAS research dataset. It contains a set of
ICD codes and a DNA sequence.We assume that each record inD
corresponds to a unique patient. The second tableT corresponds to
an identifiedEMR. It contains records of patients’ explicit identifiers
(e.g., personal names), service dates, and a set of ICD codes.
Examples ofD andT are depicted in Fig. 1A andB, respectively. To
protect privacy, our approach constructs a modified version of ~D.
Each record of ~D contains a patient’s anonymized clinical infor-
mation and their DNA sequence.

Policies. In this section, we define the notions of privacy and utility
policies. A privacy policy is defined as a set of potentially linkable
combinations of ICD codes, referred to as privacy constraints. We
define a privacy constraint as supported when all of the ICD codes
contained in it appear in ~D, and as nonsupported otherwise. A pri-
vacy policy is satisfiedwhen (i) for each supported privacy constraint,
all nonempty subsets constructed by the ICD codes appear at least
k times in ~D, and (ii) all nonempty subsets constructed by the ICD
codes of each nonsupported privacy constraint appear at least k
times in ~D, or do not appear in ~D. As an example, consider the
privacy policy of Fig. 1D, the dataset of Fig. 1E, and k= 5. A set of
ICD codes in brackets denotes that the corresponding patient is
diagnosed with any possible combination of these codes. It can be
seen that the privacy constraint {157.9} is supported in the dataset of
Fig. 1E. This privacy constraint is also satisfied for k=5 in the same
dataset because all of its nonempty subsets, which in this case is
only the privacy constraint itself, appear in at least 5 records.

Fig. 1. Biomedical datasets (fictional) and policies used by the proposed anonymization approach. (A) Research data, (B) identified EMR data, (C) utility
policy, (D) privacy policy, and (E) a 5-anonymization for the research data.
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Because all privacy constraints of Fig. 1D are satisfied in the
dataset of Fig. 1E, the privacy policy is satisfied. The satisfaction of
the privacy policy prevents patient reidentification because an
attacker cannot use potentially linkable sets of ICD codes to link a
DNA sequence to fewer than k patients in the released dataset. In
other words, the probability of reidentification remains always at
least 1/k.
A utility policy is defined as a set of diseases in which each disease

(henceforth referred to as utility constraint) is a set of ICD codes
derived from D. A utility constraint is said to be satisfied when the
number of records associated with this disease in ~D is equal to the
number of records harboring at least one of the ICD codes con-
tained in the utility constraint in D. A utility policy is satisfied if
all of its utility constraints are satisfied. Consider, for example, the
utility policy of Fig. 1C and the utility constraint asthma corre-
sponding to the set of ICD codes {493.00, 493.01, 493.02}. The
latter constraint is satisfied, because the number of patients suf-
fering from asthma in the dataset of Fig. 1E [i.e., the records
harboring (493.00, 493.01, 493.02)] is equal to the number of
patients harboring at least one of the ICD codes related to asthma
in the dataset of Fig. 1A. Similarly, it can be verified that the utility
constraints for prostate cancer and pancreatic cancer are satisfied
as well; therefore, the utility policy of Fig. 1C is satisfied. It is
important to note that satisfying a utility policy ensures that the
distribution of diseases contained in this policy will not be affected
by anonymization. This allows all associations between diseases
and DNA sequences present in the original dataset to be pre-
served in the anonymized dataset.

Anonymization strategy. Our approach creates ~D from D by re-
placing every ICD code of D with a unique anonymized item,
which is represented as a set of ICD codes. Disparate anony-
mized codes are mutually exclusive, such that there are no ICD
codes in multiple anonymized items. For instance, the ICD code
493.00 in the first record of Fig. 1A is replaced by the anony-
mized item (493.00, 493.01, 493.02) when these data are modi-
fied to that of Fig. 1E. The process by which ICD codes are
replaced with anonymized items is formally presented in SI Text.
Our anonymization strategy may replace ICD codes with

semantically consistent but more general terms, typically speci-
fied by user-defined taxonomies (9) or, by default, the ICD
coding hierarchy (http://www.cdc.gov/nchs/icd/icd9cm.htm). This
process is referred to as generalization (9). Alternatively, ICD
codes may also be suppressed (i.e., removed from the anony-
mous result) (10). As we explain later in this article, this occurs
when generalization does not suffice to satisfy the specified pri-
vacy policy. Both generalization and suppression effectively
increase the number of patients to which a privacy constraint is
associated, thereby reducing the risk of reidentification.
Notably, our generalization strategy eliminates the need of

taxonomies, whichmay be deficient or nonexistent (11), and allows
the production of more fine-grained anonymizations with higher
utility than those constructed by alternative generalization strat-
egies (9). As an example, consider diabetes mellitus type 2, a disease
that is associated with a set of ICD codes of the form 250.xy, where
x is an integer in [0, 9] and y ∈ {0, 2}. Current generalization
strategies (e.g., ref. 9) would replace any set of this type of code
with 250 (denoting diabetes mellitus) when a taxonomy that asso-
ciates five-digit ICD codes to their three-digit counterparts is
applied. By doing so, the generalization process makes it impos-
sible to distinguish between diabetes mellitus type 1 and type 2 and
yields anonymized data that are meaningless for validating GWAS
on diabetes mellitus type 2 (12). In contrast, our strategy allows a
utility constraint corresponding to diabetes mellitus type 2 to be
specified and guarantees that the number of patients diagnosed
with diabetes mellitus type 2 will be equal in the original and ano-
nymized clinical profiles, when this utility constraint is satisfied.
This effectively preserves all associations between this disease and
DNA regions and thus allows for validation of GWAS studies.

Privacy policy extraction. To help data owners formulate a privacy
policy, we present the privacy policy extraction (PPE) algorithm.
We assume that an attacker knows (i) a patient’s explicit iden-
tifiers, (ii) a certain set of ICD codes for each patient, and (iii)
whether a patient’s record is contained in D. We discuss how
such knowledge can be obtained in Discussion.
Given k and a filtering condition (i.e., a set of ICD codes deemed

as potentially identifying), PPE derives a privacy policy in two steps.
First, it iteratively populates the privacy policy with sets of ICD
codes that satisfy the filtering condition. Subsequently, PPE retains
the minimal number of privacy constraints required to satisfy the
derived policy. This is performed by discarding privacy constraints
that do not require protection (e.g., all nonempty subsets induced
by the ICD codes of these constraints that correspond to at least
k patients) or receive protection when their supersets in the privacy
policy are already protected as explained above (e.g., satisfying the
privacy constraint {493.00, 493.01, 493.02} implies that the privacy
constraint {493.00} will be satisfied as well).
We consider two concrete filtering conditions. Alternative fil-

tering conditions are also possible and can be formulated by data
owners according to their expectations about attackers’ knowl-
edge. The first one corresponds to a single-visit case, in which data
owners treat the set of ICD codes for each patient’s visit (corre-
sponding to a distinct service date) as potentially identifying. In
this case, it is assumed that an attacker cannot use sets of ICD
codes that span two or more visits. This is difficult when publicly
available hospital discharge summaries are used, because it
requires associating deidentified records with different service
dates to the same patient (9). The second filtering condition cor-
responds to the all-visits case, in which all ICD codes of a patient
are treated as potentially identifying. Clearly, this is the strictest
privacy policy one can adopt.
As an example, consider the application of PPE to Mary’s

records in Fig. 1B using k = 5 and the single-visit filtering con-
dition. First, the privacy constraints {157.0, 185} and {157.1,
157.2, 157.3}, which correspond to the service dates 01/02/08 and
07/09/09, respectively, are added to the privacy policy. However,
because the first privacy constraint is a subset of five records in
D, it is removed from the privacy policy. In contrast, {157.1,
157.2, 157.3} is not a subset of any other privacy constraint, and
thus the extracted privacy policy is {157.1, 157.2, 157.3}.
Utility-guided anonymization of clinical profiles. Given a dataset D, a
utility policy, a privacy policy, and a parameter k, we sketchUtility-
Guided Anonymization of CLInical Profiles (UGACLIP), an
algorithm to construct an anonymized dataset ~D that is protected
from reidentification and useful in validating GWAS. UGACLIP
aims to satisfy the privacy policy by iteratively satisfying each of its
privacy constraints in a series of steps. First, it selects the privacy
constraint that is currently associated with the most patients.
Second, it satisfies this constraint by iteratively generalizing the
most infrequent ICD code (or anonymized item)with another ICD
code (or anonymized item) in a way that satisfies the corre-
sponding utility constraint while minimizing an information loss
measure. If a privacy constraint cannot be satisfied by general-
ization, the ICD code (or anonymized item) is suppressed. Third, if
the privacy constraint remains unprotected, it is satisfied by sup-
pression. At this point, the algorithm proceeds to the next iter-
ation. The process terminates when the privacy policy is satisfied.
The pseudocode of UGACLIP can be found in SI Text.
As an example, consider applying UGACLIP to the data

shown in Fig. 1A using the utility and privacy policies of Figs. 1 C
and D, respectively, and k = 5. Because all privacy constraints
correspond to one patient, UGACLIP arbitrarily selects the pri-
vacy constraint {157.1, 157.2, 157.3} and attempts to satisfy it by
replacing 157.3 (the most infrequent ICD code in this constraint)
and 157.2 with the anonymized item (157.2, 157.3), which corre-
sponds to four patients. This generalization minimizes informa-
tion loss and satisfies the utility constraint corresponding to
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pancreatic cancer (i.e., the number of patients with this disease in
the data of Fig. 1A is unaffected by generalization). However, the
privacy constraint remains unprotected and thus (157.2, 157.3) is
further generalized to the anonymized item (157.1, 157.2, 157.3).
The latter generalization satisfies the utility constraint corre-
sponding to pancreatic cancer as well as the privacy constraint
{157.1, 157.2, 157.3}, because (157.1, 157.2, 157.3) corresponds to
at least five patients. At this point the first iteration of UGACLIP
has completed, and the algorithm proceeds by considering the
next privacy constraint {157.9}. After all iterations, UGACLIP
produces the anonymized clinical profiles depicted in Fig. 1E.
In UGACLIP, we use the aforementioned generalization strat-

egy, which replaces a number of ICD codes with an anonymized
item corresponding to their set according to the specified utility
policy. In addition, because there are many possible ways to gen-
eralize data that satisfy the specified utility and privacy policies, our
method incorporates an information loss measure to select a gen-
eralization that less distorts data (seeSIText fordetails).However, it
may be impossible to protect a privacy constraint using general-
ization only. This occurs when a constraint contains subsets of ICD
codes that appear fewer than k times in ~D after applying all gen-
eralizations that satisfy the utility policy. In this case, we apply
suppression to remove ICD codes from the privacy constraint until
the constraint is satisfied. We note that applying suppression may
result in violating theutility policybecause itmay reduce thenumber
of patients associated with certain diseases, resulting in potentially
invalidGWASfindings.However, such aneffect canbemitigatedby
limiting the number of allowable suppressed ICD codes via a user-
specified threshold. Fortunately, GWAS tend to focus on statisti-
cally significant associations, which involve frequent ICD codes that
are unlikely to be suppressed in practice.

Results
Datasets and Experimental Setup. We evaluated our approach with
two sets of patient records derived from a deidentified version of
the Vanderbilt University Medical Center EMR system (13). The
first dataset contains the diagnosis codes of 2,762 patients and was
constructed for the purposes of an NIH-sponsored GWAS. This is
referred to as the Vanderbilt Native Electrical Conduction dataset
(VNEC), and it was also used by Loukides et al. (7). The genomic
sequences and primary clinical phenotype are expected to be
deposited in dbGaP. However, it is our goal to determine which
components of the profile can be shared in addition. The second
dataset is a version of VNEC with a reduced set of ICD codes and
comprises 1,335 patient records. It models a scenario in which
data owners know which diagnoses can be applied as cases for
other studies (1) and is referred to as the Vanderbilt Native
Electrical Conduction Known Controls dataset (VNECKC).
We instantiated UGACLIP with privacy policies derived by

PPE using both the single-visit and all-visits filtering conditions
and values of k between 2 and 25. We manually constructed
utility policies that include ICD codes associated with diseases
that are relevant to existing GWAS studies. Specifically, we
considered GWAS for several diseases, which are summarized
elsewhere (14) and appear at least k times in the datasets. Dis-
eases that correspond to fewer than k patients in a dataset must
be suppressed by UGACLIP to satisfy the privacy policy. The
diseases contained in the utility policy for both datasets and for k
= 5 are illustrated in Table 1. The additional utility policies we
applied, as well as the associations between diseases and ICD
codes in these policies, can be found in SI Text.
Because there are no directly comparable anonymization

approaches to UGACLIP, we compare it against a variant of this
algorithm, referred to as ACLIP (Anonymization of CLInical
Profiles). ACLIP uses the same privacy policy as UGACLIP, but
it does not take the utility policy into account. Rather, ACLIP
follows the approach of Xu et al. (10) in that it attempts to

maximize data utility by minimizing the amount of information
loss incurred to anonymize clinical profiles.
In the following experiments, we evaluate the reidentification

risk, as well as the effectiveness of our method, in terms of its
ability to (i) construct useful anonymizations for validating
GWAS and (ii) perform studies focusing on clinical case counts.

Reidentification Risk Evaluation. The risk of reidentification was
quantified by measuring the number of records that share a set of
potentially linkable ICD codes extracted by our algorithm. This
number is referred to as distinguishability and is equal to the
inverse of the probability of associating a patient to his DNA
sequence with respect to the extracted sets of potentially linkable
codes after data release. Records with a distinguishability score
of 1 are regarded as uniquely identifiable and correspond to
patients whose identity can be revealed after data linkage,
whereas those with a score of <5 are defined as unpublishable.
Fig. 2 reports the result for both datasets and filtering conditions.
Notice that, for the single-visit case, at least 40% of the records
of each dataset are uniquely identifiable, whereas 75% are
unpublishable. Furthermore, because of the stricter privacy
policy used, the corresponding statistics for the all-visits case
increased to 96% and 99%, respectively. This validates the fea-
sibility of the considered attack and the need for a formal
approach to preserve privacy when releasing clinical profiles.

Utility Constraint Satisfaction. We next evaluated the effectiveness
of UGACLIP at generating anonymizations that assist in GWAS
validation. First we measured the number of utility constraints the
anonymized clinical profiles satisfy. The result for the VNEC
dataset is shown in Fig. 3A. It can be seen that the anonymizations
generated by UGACLIP with k = 5, as is often in applications
satisfied more than 66% of the specified utility constraints for the
single-visit case. As expected, the number of satisfied utility con-
straints dropped for the all-visits case. However, UGACLIP still
satisfied at least 16.7% of the utility constraints for all k values.
This is in contrast to ACLIP, which failed to construct a useful
result for GWAS (no utility constraints were satisfied in any case).
The result of applying UGACLIP and ACLIP to the VNECKC
dataset reported in Fig. 3B is quantitatively similar to that of
Fig. 3A. These results suggest that our approach is effective in

Table 1. Satisfied utility constraints for k = 5 and the single-visit
case (✓ denotes that a utility constraint is satisfied)

VNEC VNECKC

Disease UGACLIP ACLIP UGACLIP ACLIP

Asthma ✓ ✓

Attention deficit
with hyperactivity

Bipolar I disorder ✓ ✓

Bladder cancer
Breast cancer ✓ ✓

Coronary disease ✓ ✓ ✓

Dental caries ✓ ✓

Diabetes mellitus type 1 ✓ ✓

Diabetes mellitus type 2 ✓ ✓ ✓

Lung cancer ✓ ✓

Pancreatic cancer ✓ ✓

Platelet phenotypes
Preterm birth ✓ ✓

Prostate cancer ✓ ✓

Psoriasis ✓

Renal cancer ✓

Schizophrenia ✓

Sickle-cell disease ✓

Loukides et al. PNAS | April 27, 2010 | vol. 107 | no. 17 | 7901

M
ED

IC
A
L
SC

IE
N
CE

S

http://www.pnas.org/cgi/data/0911686107/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0911686107/DCSupplemental/Supplemental_PDF#nameddest=STXT


anonymizing data guided by a utility policy. Interestingly, applying
both methods to VNECKC resulted in an increased number of
satisfied utility constraints. This is because restricting clinical
profiles to diseases related to GWAS makes VNECKC less sparse
than VNEC, which increases the chance of grouping ICD codes in
a way that satisfies utility constraints.
We further examined which of the utility constraints the

anonymized clinical profiles satisfied. Table 1 depicts the result
for k = 5 and the single-visit case. Notice that the anonymized
version of VNEC produced by UGACLIP validates GWAS-
related associations for the majority of the diseases. This, how-
ever, was not possible for some diseases, such as Attention deficit
with hyperactivity, for which all corresponding ICD codes had to
be suppressed to satisfy the privacy policy. Specifically, UGA-
CLIP performed 167 suppressions, in which 0.19% of the ICD
codes were removed from VNEC. In contrast, ACLIP generated
clinical profiles that fail to satisfy any of the utility constraints
and thus do not validate GWAS for the selected diagnoses.
Regardless, both anonymization methods performed relatively
better for VNECKC. Again, this was because the clinical profiles
in this dataset are less sparse. In particular, UGACLIP was able
to satisfy all but three of the utility constraints, significantly
outperforming ACLIP. Experimental results for the range of
tested k values and for the all-visits case are provided in SI Text.

Support of Clinical Case Counts.We investigated the effectiveness of
our method in generating anonymizations that assist studies
focusing on clinical case counts, which are beyond GWAS-specific
validation. This is important to investigate because it may be dif-
ficult for scientists to a priori predict all possible uses of GWAS
data. In this set of experiments, we assumed that data users issue

queries to learn the number of patient records harboring a com-
bination of ICD codes that appears in at least 10% of the records.
This task is crucial in data-mining applications (10).
However, anonymized clinical profilesmaynot allow suchqueries

to be answered accurately because an anonymized item can be
interpreted as any of the nonempty subsets of ICDcodes it contains.
For instance, a data recipient will be uncertain about the number
of records harboring the ICD code 493.00 when using the anony-
mized data shown in Fig. 1E. Thus, to evaluate utility, we adopted a
metric called relative error (RE) (15), which reflects the number of
records that are incorrectly retrieved in the answer to a query when
issued against anonymized clinical profiles. In our experiments, we
measured the mean and SD of the RE scores for a workload of
queries. Details of the process are provided in SI Text.
The results for the single-visit case and for the VNEC dataset

are reported in Fig. 4A. Observe that ACLIP resulted in a rel-
atively small error, <0.75 on average, for all tested values of k,
outperforming UGACLIP. This is because the majority of the
combination of ICD codes contained in the queries did not
correspond to diseases used as control variables in GWAS,
whose distribution UGACLIP was configured to preserve. Thus,
as expected, UGACLIP generalized other ICD codes slightly
more to preserve the distribution of these diseases. Yet it should
be noted that the RE scores for ACLIP and UGACLIP were
approximately within 1 SD of each other for all k values. This
suggests that UGACLIP is capable of producing anonymizations
that support both GWAS and studies focusing on clinical case
counts in general. The RE statistics for the single-visit case and
for the VNECKC dataset are illustrated in Fig. 4B. As can be
seen, the RE scores for both methods were small, and the per-
formance of UGACLIP was comparable to, and in some cases
better than, that of ACLIP. This is because the queried combi-
nations of ICD codes were contained in the utility policy used in
UGACLIP and thus were not substantially distorted. The results
for the all-visits case were quantitatively similar to those of Fig. 4
A and B and can be found in SI Text.

Discussion
In this section, we discuss the feasibility of data linkage attacks in
practice and the limitations of our methodology.

Feasibility of Data Linkage. It should be acknowledged that to rei-
dentify individuals using disseminated patient-level ICD codes in
combination with genomic information, an attacker must harbor
knowledge of a patient’s identity, as well as some portion of a
patient’s clinical profile. In this study, we assumed that an attacker
possesses three types of knowledge: (i) a patient’s identity, (ii)
selected ICD codes, and (iii) whether a patient is included in the
released research sample. We note that knowledge of the first two
types can come in the form of background knowledge (16) or may
be solicited by exploiting external data sources, such as publicly

Fig. 2. Reidentification risk (shown as a cumulative distribution function).

BA

Fig. 3. Utility constraint satisfaction at various levels of protection for (A)
VNEC and (B) VNECKC.

BA

Fig. 4. Relative error in query answering for the single-visit case and for (A)
VNEC and (B) VNECKC. Points correspond to the mean RE, and error bars are
of 1 SD.
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available voter lists combined with hospital discharge summaries
(9) or the identified EMR system available to the primary care
environment (7). In this respect, we note that data access policies
that limit the availability of ICD codes often exist in practice. For
instance, EMRusers at Vanderbilt UniversityMedical Center (13)
are required to sign a confidentiality agreement that explicitly
prohibits reidentification attempts, and record-level data in dbGaP
are available only to researchers approved by a data access com-
mittee (4). Nonetheless, such policies provide no formal privacy
protection guarantees, andmedical record breaches have occurred
(9). Regarding the knowledge of the third type, we recognize that it
can be inferred by applying the procedure used to create the
research sample from a larger patient population, which is often
described in the literature.
It is also important to mention that there is another type of data

linkage that can be exploited to associate individuals to their
released genomic information (17). To perform this linkage, an
attacker needs access to an individual’s identity and DNA, as well
as to a reference pool of DNA containing individuals from the
same genetic population as the identified individual. We empha-
size that data owners should consider both types of data linkage
before releasing their data and devise their policies according to
their expectations about the capabilities of attackers.

Limitations. The proposed approach is limited in certain aspects,
which we highlight to suggest opportunities for further research.
First, as is true of all data anonymization methods, our approach
leaves the decision of selecting a suitable privacy protection level

(i.e., k and the filtering condition of PPE) to data owners or
policy officials. This may be a difficult task, because it requires
prediction of adversarial knowledge. Yet, if such knowledge is
underestimated, it may lead to the compromise of patients’
privacy. On the other hand, if an attacker’s knowledge is over-
estimated, it may result in excessively distorted data (16).
A second limitation of this work is that the UGACLIP algo-

rithm does not guarantee that the anonymized clinical profiles
will incur the least amount of information loss possible to satisfy
the specified utility policy. The design of approximation algo-
rithms that offer such guarantees is important to address the
growing size of GWAS-related datasets, but is also challenging
due to the computational complexity of the problem (10).

Conclusions
In this article we proposed a method to anonymize patient-specific
clinical profiles, which should be disseminated to support biomedical
studies. Our method (i) offers provable protection from individual
reidentification based on clinical features, (ii) allows sensitive pat-
terns of ICD codes to be automatically extracted, and (iii) generates
anonymizations that help validate GWAS and perform clinical case
analysis tasks. These features were experimentally verified using
patients’data fromclinical profilesderived fromarealGWAScohort.
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